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Abstract—Accurate indoor positioning is critical in the field
of location-basedservices and robotics. Visible light position-
ing (VLP) technology is a promising technique as it can pro-
vide high accuracy positioning based on the existing lighting
infrastructure. However, it is difficult to meet the requirement
of multiple LED anchors in range for successful and accurate
positioning. In this article, we proposed a loosely-coupled
VLP-inertial fusion method for VLP, with an inertial measure-
ment unit (IMU) and rolling shutter camera, to improve posi-
tioning robustness under LED shortage/outage. The efficacy
of the proposed VLP scheme as well as the robustness under
LED outage, handover situation and background light inter-
ference, are verified by real-world experiments. The results
show that our proposed scheme can provide an average accuracy of 2.1 cm (stationary localization) and the average
computational time in low-cost embedded platforms is around 33 ms.

Index Terms— Visible light positioning (VLP), robust indoor positioning, high accuracy, sensors fusion, inertial
measurement unit (IMU), robotic localization.

I. INTRODUCTION

W ITH the increasing demand for indoor location-based
services, indoor localization technology has been inten-

sively studied in recent years. However, limited by penetra-
tion capability and multipath effect, the widely-used outdoor
positioning technique, global positioning systems (GPSs), are
restricted in indoor scenarios. In addition, conventional radio
frequency (RF)-based indoor positioning technologies in terms
of Wi-Fi, Zigbee, Bluetooth, Radio-frequency Identification
(RFID) and ultra-wideband (UWB), have inherent flaws, such
as, low accuracy, limited coverage, high hardware costs,
and electromagnetic interference [1]. On the contrary, visible
light positioning (VLP) technology uses illumination LED to
transmit position information by directly modulating the light
intensity at a high frequency, which is invisible to human eyes
and can realize illumination and positioning simultaneously.
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VLP can also provide relative high accuracy since it is more
immune to multipath effects and fading. Furthermore, the VLP
does not cause any electromagnetic interference, thus making
it suitable for use in sensitive areas such as hospitals and
airplanes [2].

A. Motivation
VLP methods can be divided into two categories according

to the type of receiver: PD-based [3]–[6] and image sensor-
based [7]–[10]. PD is not an ideal VLP device, because it
is sensitive to the light intensity variation and the diffuse
reflection of the light signal [11]. On the contrary, image
sensor-based VLP is favored in both commerce and industry,
since the good compatibility with user devices, such as mobile
robots and smartphones. The coordinate information of each
LED is transmitted in the format of temporally-varying inten-
sity signals and mapped to spatially-varying striped patterns
on the camera image based on the rolling shutter effect (RSE).
Through the region-of-interest (ROI) of the LED extrac-
tion [12], ID decoding, and positioning calculation through
imaging geometry, the coordinate of the positioning terminal
can be obtained based on the global map.

In our previous works [8]–[10], we proposed high accuracy
VLP algorithm based on triple, double, and single LEDs to
realize centimeter-level accuracy. In [13], we firstly adopt
the VLP using double LEDs into robotics localization, which
achieves a positioning accuracy within 1 cm with positioning
latency lower than 80 ms. In [7], a VLP system based on
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mobile phone is proposed and achieves an accuracy of 7.5 cm
with moving speeds of up to 18 km/h. In [1], a lightweight
VLP scheme implemented on a Raspberry Pi can achieve
a positioning accuracy of 3.93 cm and support the moving
speed up to 38.5 km/h. Despite the promising performance
of existing VLP systems, there remain some practical chal-
lenges, especially the LED shortage problem, which is mainly
caused by the deployment density of LEDs, obstruction of
the line-of-sight (LOS) views, limited field-of-view (FOV)
of the image sensor, and so on. Although there exist some
centimeter or decimeter-level accuracy VLP schemes based
on single LED [8], [14], [15], it is still difficult to ensure the
requirement of one known LOS LED in every corner and any
area of the practical scenarios. Especially, the incomplete VLP
observation due to the LOS blockage caused by a moving
human body or any other items, which is the most serious
problems for VLP practical application. Additionally, sensors
are imperfect, and their measurements are prone to errors.
The measurement noise of the VLP, which is caused by
fabrication error of the image sensors, is also the bottleneck
of the positioning accuracy in the field of image sensor-based
VLP [11]. By fusing the data from multiple sensors, we can
obtain an overall and optimal position estimation whose error
is less than only using VLP.

B. Contribution
In this work, we propose a loosely-coupled VLP-inertial

fusion method for robotics using RSE-based camera with
single LED for VLP, and inertial measurement unit (IMU).
More specifically, we employ an extended Kalman filter (EKF)
for real-time 3D pose estimation (position and orientation) by
fusing the relative pose measurements from the IMU with
the absolute pose from the VLP measurement. As for the
VLP measurement, based on our previous work [8], we firstly
proposed a VLP algorithm based on single LED adopted
with odometer for orientation angle calculation, termed it as
single LED VLP with odometer (SLO-VLP), to achieve 3D
pose measurement of the robot. Then an EKF-based pose
estimation scheme is proposed to stably obtain the global
poses of the robot through estimating the state transition
and predicted covariance from the IMU, and updating them
by the SLO-VLP observations. When one LED is observed
for SLO-VLP calculation, the weight of the SLO-VLP in
the optimal state estimate increases, caused by the function
of the near-optimal Kalman gain. When there is no LED
(without SLO-VLP observation), over a short period of time,
our method can still efficiently estimate the 3D pose of the
robot, which greatly improves the robustness and usability of
the VLP system under LED shortage.

We highlight the contributions as:

• SLO-VLP algorithm is proposed to achieve high accuracy
3D localization just using single LED as positioning
anchor.

• An EKF-based loosely-coupled SLO-VLP-inertial fusion
method is proposed to handle the situation of VLP
unavailable, and we can relax the assumption on the min-
imum number of concurrently observable LEDs required
for positioning to zero. Meanwhile, the measure noise

from the SLO-VLP is also updated based on the EKF
to eliminate the sensor noise, while the cumulative error
from the IMU can be corrected by the VLP observation.

• The proposed SLO-VLP-inertial fusion scheme is evalu-
ated in a real-world environment based on mobile robot
under the harsh environment (LED shortage/outage, han-
dover, and background light interference). The efficacy of
the proposed localization scheme and accurate 3D pose
tracking, are verified with extensive experiments.

C. Organization
The remainder of this article is organized as follows.

Section II introduces the related works. Section III explains
the proposed methodology, including the principle of SLO-
VLP, and EKF-based SLO-VLP and inertial fusion. Section IV
presents the experimental evaluation and Section V is the
conclusion.

II. RELATED WORK

A. RSE-Based Optical Camera Communication
As we know, LEDs can transmit data over the air by directly

modulating the light intensity at a high frequency which is
invisible to human eyes but perceivable by camera or PD.
Generally, PD is used as the receiver to capture the signal
for the visible light communication (VLC) system. Recently,
camera based on RSE can be also adopted as the receiver in
optical camera communication (OCC) system. The pixels on
an RSE image sensor are exposed and read out line by line
instead of perceiving light at the same time at a single moment.
The “ON” or “OFF” light signal can be transferred into bright
or dark patterns in the captured image. For a comprehensive
understanding of OCC and decoding in image-based VLP,
we refer readers to the previous works [16]–[20]. In this
work, we employ our universal VLC modulator [21] for
retrofitting LED lamp to transmit the ID information to the
RSE-based camera receiver. Each LED lamp is assigned with
a unique identity (ID), which is associated with its location
and stored in an ID-location database. The designed ID packet
begins with a 6-bit preamble (011110), proceeded by 8-bit and
8 kHz-frequency OOK-coded data payload data. The payload
carries one byte of ID, labeling up to 256 LEDs. The channel
capacity can be extended by a larger payload. For the details
of the VLC modulator, please refer readers to our previous
works [21], [22].

B. RSE Camera-Based Visible Light Positioning
The LOS and weak perspective projection property provide

information about the camera’s relative position and rotation
with respect to each detected LED. Decimeter/centimeter-level
accuracy has been reported in some RSE-camera based VLP
systems [1], [7], [9]–[11], [23]–[26]. Yet, all these cam-
era based VLP systems treat LED lamps as point sources
without geometric information. Thus, multiple known LED
anchors are required at a time for trilateration or triangulation.
Such approaches rely on dense deployment of LED beacons.
To reduce the number of required LEDs in VLP, [14] no longer
treat the captured LED images as a point as in the existing
works, but as an image whose geometric features are exploited
to determine the receiver’s orientation and location relative
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to the reference LED lamp. However, this method requires
additional marker to be placed on the LED. Another straight-
forward method is to employ angular sensors to measure
the receiver’s orientation information, thus “compensating”
the missing information due to the reduced number of LED
lamps. Reference [27] efficiently relax the assumption on the
minimum number of simultaneously observable LEDs from
three to one, through the tightly-coupled visual-inertial fusion
method for VLP. However, they still build up the experimental
platform in the area of 5m × 4m × 2.3m with 23 LEDs, since
their system required more than 4 LEDs for initialization. Ref-
erence [28] proposed a hybrid positioning algorithm consisting
of VLP and pedestrian dead reckoning (PDR) to achieve
decimeter-level accuracy. Reference [29] proposed single LED
VLP using image and attitude information from mobile phone
to achieve average accuracy of 4.45 cm. However, all of those
works cannot provide stable and high accuracy under the
situation of without LED. Besides, the ID-decoding rate cannot
maintain 100%, which would also cause failure or major
errors in VLP, and multi-sensor fusion has great potential
for improving the robustness of VLP application. Therefore,
in this article, we propose VLP and inertial fusion scheme to
improve positioning robustness and maintain the positioning
accuracy under the harsh situation of without LED, LOS
blockage of VLP, or even failure of ID decoding.

III. METHODOLOGY

A. Our SLO-VLP
In our proposed scheme, the time-varying VLP signals from

LEDs are perceived by the RSE-camera, which is installed
vertically on the robot, as spatially-varying strip patterns.
Through the VLP observation, the state of the robot can be
estimated in time. To do so, firstly, we need to find the centroid
imaging location or the ROI of the LED in the captured image,
and then recognize its ID, and retrieve the 3D position of the
captured LED from the registered LED database. After that
we can obtain the absolute 3D position and azimuth of the
robot from SLO-VLP calculation. Please note that we mainly
deal with the VLP and inertial fusion scheme in this article, for
the readers that are interested in the low complexity LED-ROI
extraction and the efficient LED-ID decoding, please refer to
our future works.

1) LED-ROI Extraction Scheme: The strip patterns induced
by the modulated LEDs are parallel to the rows in the
image and interleaving in the vertical direction, as shown in
Fig. 1. For the VLP calculation, the first step is to extract
the LED-ROI from the image and obtain the centroid pixel
coordinates as camera measurements. To achieve this, a robust
ROI extraction method with low complexity method is adopted
to accurately obtain the LED-ROI even under the interference
situation.

2) LED-ID Decoding Scheme: After extracting the ROI of
the LED from the capture image, an efficient decoding scheme
is adopted to obtain the associated world coordinate of the
LED which is carried by the vertically-varying strip widths
within the ROI. The demodulation algorithm allows differ-
ent cameras with heterogeneous sampling rates to accurately
decode the LED-ID with different modulation frequencies.

Fig. 1. Example results for ROI extraction under background light
interference and VLC ID decoding.

Fig. 2. The transforms among the world, camera, and image coordinate
systems.

3) Single LED VLP With Odometer (SLO-VLP): The 3-D
world coordinate system, 3-D camera coordinate system, and
2-D image plane coordinate system, are shown in Fig. 2.
All of the LEDs Pi = [Xi , Yi , Zi ]T

�
i = 1st , 2nd , . . . N

�
in

the world coordinate, is mapped onto an image point pi =
[xi , yi ]T

�
i = 1st , 2nd , . . . N

�
in the image coordinate through

the lens of the camera (i is the unique ID). While the pi can
be measured through the image process pipeline. Although the
observation value of the imaging point is often influenced by
noises [11], through the robust ROI detection method, it can
be measured precisely and robustly.

We assume a fully calibrated pinhole camera with a per-
spective projection model, thus, for any LED Pi in the world
coordinate, we can model the VLP system model as:

Pci = R(Pi − Os) (1)

where Pci = [Xci , Yci , Zci ]T (i = 1, 2, . . . N) is the coordi-
nate of the LED Pi in the 3-D camera coordinate system.
Os = [Xs, Ys , Zs ]T is the center of the camera (positioning
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state of the camera), which also refer to the coordinate of the
positioning terminals. R is the rotation matrix from the 3-D
world coordinate system to the 3-D camera coordinate system,
as follows:

R = Rx (α) • Ry (β) •Rz (γ ) =
⎡⎣1 0 0

0 cosα sinα
0 −sinα cosα

⎤⎦
•

⎡⎣cosβ 0 −sinβ
0 1 0

sinβ 0 cosβ

⎤⎦ •
⎡⎣cosγ −sinγ 0

sinγ cosγ 0
0 0 1

⎤⎦ (2)

where α, β and γ is the angle along the X, Y, and Z
axis. The three rotation angles can be estimated from the
inclination sensor attached to the robot. In this article,
we adopt the odometer from the mobile robot for angle cal-
culation. The raw state definition of the odometer http://docs.
ros.org/en/melodic/api/geometry_msgs/html/msg/Pose.html:

s0 = [O
G q̄T G PT

O ] (3)

Here the unit quaternion1 O
G q̄T represents the rotation from

the global frame to the odometer frame. The vector G PT
I is

the position of the odometer origin in the global frame:
O
G q̄T = q0 + q1i + q2 j + q3k (4)

Then, the Euler angle can be calculated through the trans-
form form the quaternion as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α = tan−1 2(q0q1 + q2q3)

1 − 2(q2
1 + q2

2 )

β = −sin−1(2q0q2 − 2q1q3)

γ = tan−1 2(q0q3 + 2q1q2)

1 − 2(q2
2 + q2

3 )

(5)

Since the robot is moving horizontally on the floor, only the
azimuth angle γ is needed to be considered, while the other
two rotation angles can be ignored as constant matrix Cα and
Cβ . Then, the rotation matrix of the camera with respect to
the 3-D world coordinate system can be expressed as another
format:
R = Cα · Cβ · Rz (γ )

=

⎡⎢⎢⎣
cos(tan−1 2(q0q3+2q1q2)

1−2(q2
2+q2

3 )
) −sin(tan−1 2(q0q3+2q1q2)

1−2(q2
2+q2

3 )
) 0

sin(tan−1 2(q0q3+2q1q2)

1−2(q2
2+q2

3 )
) cos(tan−1 2(q0q3+2q1q2)

1−2(q2
2+q2

3 )
) 0

0 0 1

⎤⎥⎥⎦
= Cα · Cβ ·

⎡⎣a −b 0
b a 0
0 0 1

⎤⎦ (6)

where, ⎧⎪⎪⎨⎪⎪⎩
a = cos(tan−1 2(q0q3 + 2q1q2)

1 − 2(q2
2 + q2

3 )
)

b = sin(tan−1 2(q0q3 + 2q1q2)

1 − 2(q2
2 + q2

3 )
)

(7)

For the Z coordinate Zs of the positioning terminal, it can
be calculated by:

Zs = Zi − H (8)

1https://en.wikipedia.org/wiki/Quaternion

where H is the vertical distance from center of the camera
Os to the ceiling. The LED image is no longer treated as
a point as in the existing works, but as an image whose
geometric features are exploited to determine Zs . Since the
rotation angles of the X and Y axis are taken to 0o, when the
robot moves horizontally, Cα and Cβ would be the identity
matrix. Then vertical distance H between the LED and the
lens plane can be expressed as

H

f
= D

Pddpixel
(9)

where f is the focal length, D is the physical diameter of the
LED, dpixel is the pixel distance of the LED-ROI, and Pd is the
conversion of the pixel distance and physical distance. f and
Pd are the intrinsic parameter of the camera. The relationship
between the 3-D world coordinate of LED Pi in the 3-D
camera coordinate system Pci = [Xci , Yci , Zci ]T and the LED
in the image coordinate pi = [xi , yi ]T can be described by:

Xci

xi
= Yci

yi
= Zci

− f
(10)

Substituting (6), (8) and (10) into (1), we derive the
mathematical relation between the LEDs, [Xi , Yi , Zi ]T , and
the observation values of their corresponding imaging points
[xi , yi ]T , then we have⎡⎣ xi

yi
D

Pd dpixel

⎤⎦ = Cα · Cβ ·
�

− f

H

� ⎡⎣ a b 0
−b a 0
0 0 1

⎤⎦⎡⎣Xi − Xs

Yi − Ys

Zs − Zi

⎤⎦ (11)

After obtaining the estimation coordinate of the camera’s
center, the 3D position and azimuth of the robot at time t can
be estimated through the tf transformation2 as follows:⎡⎢⎢⎣

xt

yt

zt

δt

⎤⎥⎥⎦ = Ft f (

⎡⎢⎢⎣
Xs

Ys

Zs

γ

⎤⎥⎥⎦) =

⎡⎢⎢⎣
rx 0 0 0
0 ry 0 0
0 0 rz 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

Xs

Ys

Zs

γ

⎤⎥⎥⎦ +

⎡⎢⎢⎣
tx

ty

tz
0

⎤⎥⎥⎦ (12)

where,rx , ry , rz and tx , ty, tz are the rotation and translation
coefficient from the center of the camera to the base_link3 of
the robot.

B. VLP-Intertial Fusion Based on EKF
1) IMU State Prediction: Our goal is to estimate the full 3D

(x, y, and z) pose of a mobile robot over time. The process
can be described as a nonlinear dynamic system, with�st = f (st−1) + wt (13)

where f () is a nonlinear state transition function of IMU
state prediction, and wt is the process noise (as the biases
of inertial sensors), which is assumed to be a Gaussian
distribution. st is the state of the robot’s system (i.e., 3D pose
and 3D orientation) at time t. Since the robots generously move
horizontally, the state of the robot’s system st is defined as a
4D pose (3D pose and 1D orientation) and the velocity along
the X and Y axis:

st = [xt ẋt yt ẏtδt ]T (14)

2https://wiki.ros.org/tf
3http://wiki.ros.org/navigation/Tutorials/RobotSetup/TF
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The raw data of the IMU4 in robotics is orientation quaternion,
angular velocity, and linear acceleration. After the transforma-
tion from quaternion to the Euler angle (Eq. 5), the obtained
value is as follows:⎡⎣ ax ay az

r p y
wr wp wy

⎤⎦ =
⎡⎣ ax ay 0

0 0 y
0 0 wy

⎤⎦ (15)

where the ax , ay,and az is the linear acceleration along the
X, Y, and Z axes, respectively. While the wr , wp , and wy is
the angular velocity of the roll, pitch, and yaw, respectively.
r , p, and y represents the rotation from the global frame to
the IMU frame. Then, the pose of the robot can be predicted
as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xt = xt−1 + ẋt−1�t + 1

2
arx�t2

ẋt = ẋt−1 + arx�t

yt = yt−1 + ẏt−1�t + 1

2
ary�t2

ẏt = ẏt−1 + ary�t

zt = zt−1

δt = δt−1 + wy · �t

(16)

While arx and ary is the component of ax and ayon the X and
Y axis: �

arx = axcosδt − aysinδt

ary = axsinδt + aycosδt
(17)

It is worth mentioning that our formulation for IMU pre-
diction can also take advantage of the control command
being issued to the robot at the prediction. This means that
the control is used, and it will get converted into linear
acceleration and angular velocity terms, which will be used
during prediction. Then, the equation (13) is changed to:

ŝt = f (st−1, ut ) + wt = F�st−1 + But + wt (18)

ut = [ax ay wy]T (19)

where,

F� =

⎡⎢⎢⎢⎢⎢⎢⎣
1 �t 0 0 0 0
0 1 0 0 0 0
0 0 1 �t 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ (20)

B =

⎡⎢⎢⎢⎢⎢⎢⎣
1/2cosδt�t2 −1/2sinδt�t2 0

cosδt�t −sinδt�t 0
1/2sinδt�t2 1/2cosδt�t2 0

sinδt�t cosδt�t 0
0 0 0
0 0 �t

⎤⎥⎥⎥⎥⎥⎥⎦ (21)

4http://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/Imu.html

The state transition matrices F, are defined to be the
Jacobian5 of f :

F = ∂ f

∂ s

���� (st−1, ut )

=

⎡⎢⎢⎢⎢⎢⎢⎣
1 �t 0 0 0 −1/2�t2(axsinδt + aycosδt)
0 1 0 0 0 −�t (axcosδt + aysinδt )

0 0 1 �t 0 1/2�t2(axsinδt − aycosδt)
0 0 0 1 0 −�t (axcosδt − aysinδt )
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
(22)

The first stage in the EKF, shown as equations (18) and (23),
is to carry out a prediction step that projects the current state
estimate and error covariance forward in time:�P t = F P t−1 FT + Qt (23)

The estimate error covariance, �P t , is projected via F, and
then perturbed by the process noise covariance Qt , which
is defined as the expectation of the multiplication of process
noise and its transpose:

Qt = E(wt , w
T
t ) (24)

The process noise covariance Qt can be dynamically
adjusted as follows:

Qt = 1

T

�T −1

i=0
(ŝt−i − st−i )(ŝt−i − st−i )

T (25)

where, T is the window length (T = 10) of the dynamically
adjustment.

2) SLO-VLP Measurement Update: The EKF employs the
camera measurements of our SLO-VLP to correct its state
estimate. Upon the successful SLO-VLP process, the robot
receives measurements from the SLO-VLP (Eq. 12) in the
form:

zt = [xt yt zt δt ]T (26)

zt = h(st ) + vt (27)

where zt is the measurement at time t , h is a model that
maps the state of the robot into measurement space (the VLP
observation), and vt is the normally distributed measurement
noise. The standard EKF formulation specifies that observation
matrix H should be a Jacobian matrix of the observation
model function h. To simplify the model, we use the position-
ing calculation produced by SLO-VLP as the measurements,
which is also in the same space as the state variables. As such,
the observation matrix H is simply the identity matrix:

H =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ (28)

The EKF gain can be calculated by using the SLO-VLP
observation matrix H and the estimated error covariance �P t :

K t = �P t H T [H �Pt HT + Rt ]−1
(29)

5https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
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Fig. 3. Overall architecture of the proposed SLO-VLP and inertial fusion in the robotics. (a) Block diagram illustrating the full pipeline of the proposed
SLO-VLP and inertial Fusion based on the EKF; (b) Experimental platform; (c) Our self-produced LED; (d) The model of the robot; (e) The indoor
map of our lab.

where, Rt is measurement noise covariance of the SLO-VLP,
which is defined as follows:

Rt = 1

T �
�T �−1

i=0
vt−iv

T
t−i (30)

where, T � is an integer. We use the gain Kt to update the state
vector and covariance matrix:

st = �st + K t (zt − H�st ) (31)

P t = (I − K t H) �P t (32)

I is an Identity matrix. We update the calculation of the
covariance of the SLO-VLP through the optimal state vector
from equation (31), and T � is set to 10. Then the measurement
noise/error of the SLO-VLP, including the noise from the
image sensor and the odometer, can be also handled through
sensor fusion during the EKF process:

Rt = 1

T �
�T �−1

i=0
(zt−i − H(st−i))(zt−i − H(st−i))

T (33)

IV. EVALUATION

We evaluate our system through real-world experiments.
We firstly evaluate the performance of the proposed SLO-
VLP, and objectively show the bottleneck of just using the
VLP for robot localization. After that, we verify the property
of the SLO-VLP and inertial fusion to show the strong
performance and the meaning of our proposed VLP-inertial
fusion compared with the state-of-the-art (SOTA) methods.
The video records of these two demonstrations are available
at the website:

• SLO-VLP: https://www.bilibili.com/video/BV1si4y1L7
HG

• VLP-inertial fusion: https://www.bilibili.com/video/
BV1ZT4y1F75x

A. Experimental Settings
The framework and experimental platform of our SLO-VLP

and inertial fusion scheme is shown in Fig. 3 . We set up a
room-sized (7.0 × 3.8 × 2.7m3) test field with 3 LEDs evenly
mounted on the yellow pole. The experiments are performed
on a Raspberry Pi 3B mobile robot (Turtlebot 3 Burger,6 with
Quad ARM Cortex-A53 Core 1.2 GHz Broadcom BCM2837
64 bit CPU and 1 GB RAM), which runs a Ubuntu Mate
16.04 OS equipped with a robot operating system7(ROS) that
is an open-source robotic framework that has been widely
adopted across academia, industry, and the military around
the world. We control the RSE camera sensor (MindVision
UB-300) settings by minimizing the exposure time, so as
to see clear strip patterns from the modulated LEDs (our
self-produced LED8). The LEDs’ radiation surface has a
circular shape of size 17.5 cm in diameter with power rating
of around 18 W. The image stream is captured at around 6 Hz
with a 2048×1536 resolution and recorded as ROS bags. The
odometry and IMU (MPU92509) is sampled at around 24 HZ

6https://emanual.robotis.com/docs/en/platform/turtlebot3/specifications/
7https://www.ros.org/
8http://liphy.io/hardware/
9https://invensense.tdk.com/products/motion-tracking/9-axis/mpu-9250/
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Fig. 4. The decoding performance of our SLO-VLP.

and 150 HZ, respectively. Yet for these sensors, hardware syn-
chronization is not available. Therefore, a multithreading loose
synchronization framework is used in our algorithm. We run
our algorithm on a laptop computer (Intel i7-10510U CPU
@1.80 GHZ, Ubuntu 18.04) using the recorded bags from the
robot. We setup the indoor grid map in our lab (Integrated
Circuit Design Center, CYT-3010, HKUST). Since both the
IMU and odometer provide relative motion measurements,
we need pose initialization. Based on our previous work [13],
we only need two LEDs to obtain millimeter-level accuracy
for pose initialization. For the details about how to obtain 3D
and orientation of the positioning terminal, please refer to our
pervious works [9], [13]. Otherwise, the robot has to head
along the global X-axes before running to obtain the initial
orientation.

B. Our SLO-VLP Performance
1) VLC Decoding Performance: Since the ID decoding is

the basis of the VLP. In this section, we firstly study the OCC
decoding performance delivered by our hardware setup and
the efficient LED-ID decoding method under various LED-
to-camera distances. The decoding success rate is defined as
the ratio of the number of the images with correct decoding
results to the total number of images captured in a certain
period. Average 1200 test data for each height, and the
respective decoding rates are shown in Fig. 4.

It is clear that the decoding rate of our LED-ID decoding
method, which can maintain more than 95% at a height
of 2.7m, is sufficient (compare with [27] only achieves 35%
decoding rate at the height of 2.5m).

2) SLO-VLP Positioning Accuracy: To evaluate the position-
ing accuracy of the proposed SLO-VLP system, two series of
experiments were carried out. The first series was used to test
the performance for motionless objects. The robot is moved in
to the coordinate-paper area of Fig. 3 (b), and 325 locations
were randomly chosen in the stationary localization field.
At each location, there is only single VLP luminaries perceived
by the camera. Then, the positioning error for each location
was calculated by comparing the actual spatial position (man-
ually observation from coordinate paper) and the estimated

Fig. 5. The cumulative distribution function (CDF12) curve of positioning
errors for the SLO-VLP.

Fig. 6. The Gaussian distribution of the SLO-VLP measurement
error. (a) The error distribution of x dimension;(b) The error distribution
of y dimension;(c) The error distribution of z dimension;(d) The error
distribution ofθ dimension.

position (from ROS calculation). The statistical result is shown
is Fig. 5. More than 90% of the positioning errors are less than
3.6 cm, and the average accuracy of our SLO-VLP is around
2.1 cm, while the maximum error is 6.8 cm.

12 We use the Gaussian distribution, which has been verified
its effectiveness in the field of VLP (refer to our previous
work [30]), to model the measurement noise of the SLO-
VLP’s output (Eq.12). Through the statistics of the mean and
variance, the distribution of the measurement error (noise)
for x, y, z, and δ are obtained and shown in Fig. 6. It is
obvious that the measurement error of the z coordinate are
more fluctuating, which is mainly caused by the change of the
ROI extraction area along with the distance. Since the robot is
moving horizontally, this would not influence the 2D accuracy,
but we still take it into consideration for the statistical error
model of the SLO-VLP.

The second series of experiments was used to test the
performance for the moving mobile robot. The demonstration
video of our proposed SLO-VLP is available at our website.13

12https://en.wikipedia.org/wiki/Cumulative_distribution_function
13Our demo of SLO-VLP is available at https://www.bilibili.com/video/

BV1si4y1L7HG
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Fig. 7. The measured positioning time.

3) Real-Time Performance: Positioning speed is another key
factor for localization systems. It represents the time-cost that
the positioning terminal can move while it can continuously
receive information from the positioning system and calculate
the current position in time. In this section, the computational
time for position calculation of SLO-VLP was continuously
measured 400 times to calculate the average positioning speed,
as shown in Fig. 7. We run the image processing pipeline on
the Raspberry Pi 3B mobile robot, and transmit to the ROS
laptop for positioning calculation. The average computational
time of SLO-VLP is around 195 ms.

C. The Proposed SLO-VLP and Inertial Fusion
Performance

Compared with the SOTA methods (as shown in Table I),
our SLO-VLP can maintain a good balance among accuracy,
real-time ability, and robustness (background interference,
handover). However, the performance of SLO-VLP still suffers
from the shortage of decodable LEDs in reality with a chance
of 5%. Furthermore, the output frequency of SLO-VLP is just
around 5∼6 HZ, which is not sufficient for a fast moving
robot. Although the algorithm efficiency can be improved
by optimizing the image processing pipeline, it still cannot
satisfy the continuity output during the movement of the
robot. Finally, at least one LED is required for the SLO-VLP,
which is not sufficiently robust under an LED outage situation.
Therefore, in this section, we firstly build the statistical error
model for the SLO-VLP, and then, the performance of the
proposed VLP-inertial fusion is evaluated through the same
setup are reported in the last section.

1) Statistical Error Model of the SLO-VLP: The measurement
noise of the proposed SLO-VLP is modeled as white Gaussian
noise (Gaussian distribution). Since the data collection process
should fully cover all the possible states of each SLO-VLP
observation. Then the mean value (from Fig. 6) and covariance
of the measurement error of the SLO-VLP can be calculated
to obtain the observation noise/error model:
P (zt | st ) = N (H st , R) = 1�

(2π)4 |�|
e− 1

2 (zt−μ)T �−1(zt−μ)

(34)

where, N is the Gaussian model, μ and � is the mean matrix
and covariance matrix of the multivariate normal distribution,
which can be calculated based on the 325 SLO-VLP observa-
tion pairs in the last section b. Based on this, we can obtain

Fig. 8. CDF curve of the positioning error for the VLP-inertial fusion,
SLO-VLP, and Odometry.

the initialization of the R0 for equation (33):

μ =

⎡⎢⎢⎣
μx

μy

μz

μδ

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1.2383
1.3198
5.6231
2.5765

⎤⎥⎥⎦ (35)

R0 = 	 =

⎡⎢⎢⎣
σx x σyx σzx σδx

σxy σyy σzy σδy

σxz σyz σzz σδz

σxδ σyδ σzδ σδδ

⎤⎥⎥⎦

=

⎡⎢⎢⎣
0.7223 0.0927 0.1770 0.1171
0.0927 1.1779 −0.2214 0.4157
0.1770 −0.2214 9.0631 0.5067
0.1171 0.4157 0.5067 3.4576

⎤⎥⎥⎦ (36)

2) Real-Time Pose Estimation: To test the real-time localiza-
tion performance, 375 locations were randomly chosen in the
experimental field to evaluate the positioning accuracy of the
proposed VLP-inertial fusion based on the EKF (stationary
localization). Without loss of generality, we also simultane-
ously calculate the positioning result from the SLO-VLP and
the odometry in the experiment, the result is shown in Fig. 8.
The average positioning accuracy of the proposed EKF, which
is 2.14 cm with the maximum error of 5.01 cm, is close to
that of SLO-VLP, which is 2.04 cm with maximum error
of 4.97 cm. While the average accuracy of the odometry is
4.95 cm with maximum error of 13.61 cm, while the position-
ing accuracy of the odometry would continue increasing due
to temperature drift. The proposed EKF-based VLP-inertial
fusion can achieve high accuracy when the VLP is available,
while maintains robustness through the IMU when VLP is
unavailable. Please note that the experiment setup is the same
as the last section b, however, based on the probabilistic theory,
the result of SLO-VLP might be different in different tests, but
maintains a similar level. The stability of the accuracy of our
proposed SKO-VLP is also evaluated through the second-time
experiment.

To further assess the localization performance, we have
collected data in the trial to show the positioning perfor-
mance among the SLO-VLP, odometry measurement, and our
proposed EKF during the movement of the mobile robot.
Fig. 9 shows the estimated trajectory, which travels around
8 m at 0.22m/s (the maximum speed of our robot). Due to
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Fig. 9. The trajectory estimation of our EKF-based method compared
with the trajectory from SLO-VLP and Odometry.

the limitation of our hardware, we cannot provide the motion
capture system to obtain the ground-truth of a moving robot.
Since the average positioning accuracy of the SLO-VLP is
only 2 cm, we use the trajectory of the SLO-VLP as the
baseline. The EKF estimates are very close to the SLO-
VLP estimation (same as the stationary localization test in
Fig. 8), but we do not discuss the accuracy for the dynamic
localization. What’s more, even under LED outage situation,
the our EKF still can provide localization, which improve the
robustness of the VLP system. While the trajectory of the
odometry measurement is deviated from the robot’s actually
position (same as the experimental observations in Fig. 8),
which is caused by the cumulative error from the inertial
sensor. For the proposed EKF method, the cumulative error
can be corrected through the absolute information provided by
VLP observation. Note that our SLO-VLP normally requires
at least one LED observation in a single image. Therefore,
there are no SLO-VLP results in the region of No-LED.

The runtime for our SLO-VLP and inertial fusion based
on EKF is shown in Fig. 10. There are some special points
of positioning time, which fluctuate from about 100 ms to
120 ms. These points are the EKF output when SLO-VLP is
available, otherwise, the mainly weight of the EKF output is
calculated through the inertial sensors. Please note that the
inertial sensors provided data at higher rates than the camera.
Even when the SLO-VLP is in-calculating (unavailable caused
by calculation delay), the IMU prediction step of EKF is still
used. Therefore, IMU measurement is used during the time
of SLO-VLP unavailable which might be caused by the low
frequency VLP output (calculation delay), lack of decodable
LED, LED outage, and so on. While the cumulative error from
the IMU can be corrected by the VLP observation. All of those
features of the proposed VLP-inertial fusion keep well balance
among accuracy, real-time, and robust performance. The video
records also show the strong robustness of the proposed
VLP and inertial fusion under background light interference,
without any LED for VLP, and handover situation. We strongly
refer our video demo.14

D. Discussions
The bottleneck for the application of the VLP is the

real-time ability and robustness, including both limited cov-

14https://www.bilibili.com/video/BV1ZT4y1F75x

Fig. 10. The measured positioning time of the proposed VLP-inertial
fusion based on the EKF.

erage and interference. In this section, we compare the per-
formance of our SLO-VLP, and the VLP-inertial fusion, with
the SOTA works in the field of VLP in Table I. The average
accuracy, computing time, and the density of the LEDs in the
related experimental platform are also reported objectively.

It is obvious that the time cost (33 ms) of the proposed VLP-
inertial fusion scheme achieves state-of-the-art. Note that we
run the whole image process and data collection on a low-cost
embedded platform Raspberry Pi 3B with a big size of cap-
tured image is 2048×1536 without any code optimization for
ARM processors. After that the data (including the VLP obser-
vation and the inertial data) are transmitted to the laptop which
takes charge of EKF-based pose estimation and visualizes the
result in RVIZ.15 The time cost here is the whole process
covering both the image process and pose estimation (runtime
in both laptop and the Raspberry), and also the time-cost of
data transmission from robot to the laptop). Compare with
the similar process platform with image size of 1640 × 1232
in [27], and 640 × 480 in [31], the proposed VLP-inertial
based on EKF is more efficient, and hence lightweight to be
used on resource-constrained computational platform. What’s
more, the proposed SLO-VLP and inertial fusion can also
work under LED temporary outage, which greatly increases
the coverage of the effective positioning area. For a large area
of (9.1 × 4.0 × 2.7m3) only 3 LEDs are required to ensure
high accuracy positioning, while the other works cannot meet
this high requirement. Besides, different harsh situations, such
as, without LED, background light interference, occlusion,
handover, are included during our experiment (details can be
seen in the video demo). Therefore, the proposed SLO-VLP
and inertial fusion scheme can achieve well balance among
accuracy, real-time performance, and robustness.

Admittedly, in this article, we would not take the cumulative
error of the odometry and the biases of the IMU into consid-
eration. We just treat the wt (Eq. 13) as Gaussian distribution.
Base on this point, the growing yaw error of the odometry and
the biases of the IMU might affect the positioning accuracy
over time. In our future study, we will deeply analyze this and
explore an efficient method for error calibration based on VLP
observation. What’s more, since the hardware limitation of
our Turtlebot3 (limited maximum speed), the gyroscope bias
and accelerometer bias would have little effect on the input
ut in Eq.18, therefore, in this article, the bias of the IMU is
treated as the Gaussian distribution (wt Eq. 13 and 18), without

15http://wiki.ros.org/rviz
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TABLE I
PERFORMANCE COMPARISON WITH THE SOTA

estimating the biases. However, when it comes to general
situation, the biases of the IMU are not negligible, which are
needed to be estimated during the EKF. The IMU state can
be added as the state of the robot (refer to [32]). These are
modeled as random walk processes driven by zero-mean white
Gaussian noise vectors. We credit our contribution mainly to
the robust SLO-VLP scheme based on inertial sensor fusion,
which derives smoothed temporally pose estimates and can be
sustained in different harsh situations. Moreover, the delivered
accuracy is good enough for many indoor robot applications.

V. CONCLUSION

In this article, we propose a loosely-coupled VLP-inertial
fusion method for robotics localization using RSE-based
camera with single or even without LED. The SLO-VLP
observations lead to an estimate of the robot position, which
can be fused with the IMU estimation to get the optimal update
of the robot’s actual position. While the IMU estimation can
be used to relax the requirement on the minimum number
of concurrently observable LEDs for positioning to zero. The
proposed scheme is evaluated on the robotic platform under
the LED shortage/outage and background light interference.
The result shows that the our method has strong robustness,
which can keep well balance among accuracy, real-time ability
and coverage. For our future study, we will deeply analyze
the cumulative error of the inertial sensor and explore more
flexible and efficient method for error calibration based on
VLP observation.
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